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Abstract

Building design is multi criteria. In view of thadreasing environmental burdens related to
the development of our modern societies, buildiegsironmental impacts have to be
considered, at early design stage. Energy consansgptinked to existing buildings use are
responsible for significant environmental impadfkreover, the existing stock replacement
rate is inferior to 1% annually, in most of deveddpcountries. Consequently, stock retrofit
represents a major lever to reach commitments iamatt change and non renewable energy
consumptions mitigation. Yet, the identification optimal sustainable retrofit programs,
including actions planning, is still a difficultdia for professionals.

The present paper is a contribution to decisiorpstpthrough optimal energy retrofit
programs identification. A multi criteria genetitgarithm (NSGA-II) is used to optimize
retrofit programs, on both their content and plagniThe retrofit measures address building
envelopes and equipments replacement. For eatlesd tvarious options are considered.

The objective functions considered target enviromaeimpacts, financial indicators and
occupants’ well-being. Solutions performances ar@uated through life cycle assessment
and life cycle cost models, using dynamic therniaugation for heating load and thermal
comfort evaluation.

These methods contribute to decision support throtng identification of Pareto non
dominated retrofit programs, on a multi criteriaisaover life cycle.

1. INTRODUCTION

Buildings expected performances have significam\yplved and increased over time.
Today, buildings have to fulfil numerous objectiviesolving both regulations compliance
and client expectations: structural and fire safelyrability; thermal, visual and acoustic
comfort; interior air quality; energy consumptiamgigation, etc. In the context of increasing
environmental burdens related to the developmemusfmodern societies, environmental
impacts have to be taken in account, at early destigge. Indeed, the preservation of energy
and the improvement of indoor environmental qudti&ye been set as clear orientations by
the European energy poli¢y][2].
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Under our latitudes, existing buildings energy aonptions — related to the use phase:
heating, cooling, ventilation, domestic hot watepduction (DHW), and lighting — are
responsible for significant environmental burdeévisreover, the replacement rate of existing
buildings is inferior to 1% per year, in most depEd countries. Consequently, existing stock
retrofit represents a major lever to reach nati@mal international commitments on climate
change and non renewable energy consumption mdigg].

However, the identification of optimal sustainabtrofit programs, including actions
planning over a time period, is still a difficutisk for professional sector. Most operational
approaches are based on iterative building sinanatguided by experien¢g][6].

This paper is a contribution to decision supportdoergy retrofit programs identification
through genetic multi criteria optimization.

2. MULTI CRITERIA OPTIMIZATION FOR BUILDING RETROF IT
DECISION SUPPORT

2.1 Decision space definition: alternative retrofiprograms

The search space is defined as a set of buildiegggrretrofit programs, characterized by
both their content and planning. The content retershe combination of energy retrofit
measures implemented, addressing holistically mgldenvelopes (thermal insulation on
facades, bottom floor and roof; windows replacemevindows to wall ratios), and the
replacement of equipments for ventilation, heatngl DHW production. For each of these
retrofit measures, various alternatives are studiedy are considered to be discrete variables
because of industrial constraints related to prodocThe planning refers to the permutation
of these measures, defining the time sequencenipiementation. From a mathematical
standpoint, the solutions are permutations of digcvariables. The problem is combinatorial.

2.2 Decision criteria

The solutions — building energy retrofit programare evaluated on a multi criteria and
life cycle basis. The objective functions considetaget environmental impacts (i.e. primary
energy consumption, climate change potential, abim@sources depletion, etc.), financial
indicators (i.e. investment cost, global cost), aemtupants’ well-being (thermal comfort
indicator), over life cycle. Some objectives areviobsly conflicting (investment cost and
primary energy mitigation), trade-offs have to 8eritified.

Figure 1 represents the life cycle assessment (L&#) life cycle cost (LCC) models
implemented to assess solutions performances. fBgdife cycle steps, materials and energy
consumptions and emissions are related to envirotahand economic impacts through LCA
and LCC databases. The use phase is modelled daysaroption of energy related to heating,
cooling, ventilation and DHW production. Heatingdts and thermal comfort are evaluated
through building dynamic thermal simulation. Thegent LCA model does not account for
materials transportation (from factory to constimetsite), construction operations on site and
maintenance over life cycle.
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Figure 1 : LCA and LCC models, over retrofittedlting extended life cycle.

2.3 Multi criteria approaches for energy retrofit decision support

The present decision problem is multi criteria, dieeision space is finite. All the solutions
are identified by their content and planning, yetit performances are not known a priori. In
this case, various methodologies can support nwiteria decision making. There are
roughly two types of decision making methodologipseference based approaches and
generative approach§g|.

Preference based methods include classical tranatmms from a multi criteria to a mono
criterion optimization problem: weighting, goal gramming, E-constraints, etc. These
procedures generally require some knowledge okthetions, to set weights, constraints or
goals. They lead to the identification of a singl@ution. Moreover, weighting and E-
constraints are sensible to problem convexity pitogse If the problem is non convex, some
solutions may not be accessible to deci$iin

Generative approaches aim at providing the decisiakers with a set of good trade-off
solutions, describing the various compromises that be considered. Theses ones are often
represented by Pareto frontiers. The Pareto fromgighe set of non dominated solutions
among the considered alternatives. By definitiogiven solution is said to be non dominated
if there is no other solution, from the set of ddesed alternatives, being no worse in all
objectives and strictly better in at least one ditye[7]. Figure 2 represents the Pareto
frontier and the dominated solutions for a two obyes minimization problem.

X Pareto frontier
solutions

A Dominated
A solutions

(minimize)

Objective
function 1
(minimize)

Pareto
Frontier
0 T T T T

0 1 2 3 4 5

Objective function 2

Figure 2 : Example of dominated solutions and PBdrentier

The present contribution addresses decision sujyased on generative approaches. The
search for the Pareto frontier can be supportechblyi criteria optimization. The considered
problem is combinatorial, the variables are disrand the objective functions are implicit
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(involving dynamic thermal simulations). Thus, t@imization methods classification set by
Colette et a[8], suggests to use metaheuristics. These stochgsproximate methods are
adapted to the search for optimal solutions onerathrge search spaces. Facing a given
problem, the practical relevance of a metaheurist@omparison to the others is still an open
guestion[9]. We decided to implement a genetic algorithnrmsidering previous successful
applications on building design probleids.

3. MULTI CRITERIA GENETIC OPTIMIZATION
FOR BUILDING SEQUENTIAL ENERGY RETROFIT

Genetic algorithms (GA) are stochastic optimisatioethods inspired from the Evolution
theory mechanisms. Solutions are represented lmnesomes, which are sets of genes. The
alleles coded on genes account for the values thkespecific describing parameter, for a
given solution. Regarding building energy retrdifite solutions are energy retrofit programs.
They are represented by two chromosomes: one cdlgengontent, the other for the planning.
Each gene of the content chromosome representsciispetrofit measure. The allele is the
alternative considered for the given retrofit meastach gene of the planning chromosome
stands for the position of a given retrofit measartéhe time sequence.

GAs base the exploration of the search space oaubietion of a population of solutions,
over generations. At each generation, the perfocesnf population’s solutions are assessed.
Then, best solutions are selected for reproduciibe. offspring is generated by crossover and
mutation operations from parents’ chromosomes.|lyina selection procedure is applied to
build the population of the next generation, frohne tcurrent parents’ population and the
generated offspring. The evolution of the randorahpopulation over generations improves
solutions quality and the description of accesditaide-offs.

Multi criteria genetic optimization includes a bdoaariety of algorithms. The Non
Dominated sorted algorithms (NSGA-II) implementedthis work has demonstrated good
performances over various test probldaty[11].

This algorithm implements a differentiated operdtuorselection. Solutions are first sorted
into Pareto frontiers. Non dominated solutions assigned to the Pareto frontier ranked 1.
The remaining solutions are iteratively attributedPareto frontiers of increasing ranks. Then,
solutions are assigned a “crowding distance”. Tihecator represents the relative distance
separating a given solution from its closest neaginb, on the Pareto frontier they belong to.
Solutions are then selected according to: first, tink; and second, the crowding distance
they have been assigned. This approach targetssbbitions quality and dispersion on the
compromise surface they describe.

4. BUILDING RETROFIT CASE STUDY

The multi criteria genetic algorithm (NSGA Il) pesged has been implemented to study
sequential energy retrofit programs. The constoactionsidered for this case study is a multi
family building, referred to as “barre Grimaud”time following developments.

Barre Grimaud is a five-storey multi family buildinlocated in Paris suburban area. The
construction was completed in 1974, before theothiction of the first building energy
regulation in France (1975). The 10 enclosed apantsrepresent a floor area of 792 m
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4.1 Barre Grimaud description
Table 1 details, at present state, the buildingekxpe and the systems used for heating,
ventilation and domestic hot water production (DHW)

Table 1 : Barre Grimaud, envelope and systemstestefore energy retrofit
(thicknesses given in mm; envelope compositionildetdrom exterior to interior)
Coating (20) + solid concrete blo¢ks0) + air (10) + plaster (5C
Concrete slab (150) above cellars +targ50) + tiles (10)
Concrete slab (150) + morta) (btiles (10)
Gravels (30) + bitumen (4) + Concetdd (150)
Single glazing with PVC frames
Non modulated mechanical ventilation
Collective gas boiler, installecbbefl988
Individual gas boiler

N

External walls
Bottom floor
Intermediate floors
Terrace roof
Windows
Ventilation
Heating system
DHW production

Before the retrofit actions, the building envelapenot thermally insulated. The set point
temperature is 19°C from early October to late Afuring the summer, solar protections
(louvers) are used to improve thermal comfort. @ation scenarios are independent of the
retrofit program assessed. A three zone thermaleinoals been associated to the building:
ground floor, intermediate floors, and top floor.

4.2 Retrofit programs content and sequence
For each energy retrofit program, the content fsndd as a combination of options chosen

from the 8 retrofit measures classes presentechbleD.

Table 2 : Energy retrofit options considered forrBasrimaud (thicknesses given in mm)

External walls

Mineral wool exterior insulation (A,AL50, 200 or 250)

Bottom floor

Polystyrene exterior insulation (1080, 200 or 250)

Terrace roof

Polyurethane exterior insulation (1Y), 200, 250, 300)

Windows type

Low-e double glazing or triple glazimgth wood frames

Windows size

North increasing ratio options : 0.8, 1 or 1.5
West, South, East increasing ratio options : 0.8,25 or 1.5

Ventilation

Heat recovery or humidity controlled

Heating system

Low temperature condensing gasrboile

DHW production

Solar thermal fraction of DHW nee®5%, 55% or 75%

Thermal insulation, window type and ratio can biéedentiated according to the facades.
For a given retrofit program, the design (nominaivpr) of the condensing gas boiler is
adapted to the building heating demand, at thefiestep considered for boiler replacement.

From the sequence standpoint, each of the retmdisures classes is considered for a
different step of the retrofit program, except woad resizing. Windows replacement and
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resizing get necessarily involved at the same fiestep, considering economic constraints.
The external walls and the windows of all facadesraspectively retrofitted at the same step.
The different steps are implemented one after therand separated by one year.

Based on the previous hypothesis, more than 4.7%kferent retrofit programs can be
generated. Genetic algorithms, as NSGA-II, are @abjo large search space exploration.

4.3  Objective functions

7 objective functions have been considered to agstofit programs performances over
the building extended life span (assumed to be 8&@rs): cumulated primary energy
consumption [MJ]; climate change potential [kg £3%9.]; abiotic resources depletion [kg Sb
eq.]; air acidification [kg S©eq.]; investment cost [k€]; global cost on lifecksy (involving
investments and energy consumptions over use) {k€imal comfort indicator [hours].

4.4  Results and interpretation

The optimal retrofit programs are identified thrbuthe application of the NGSA-II
procedure to a random initial population of solofo The results are presented as Pareto
frontiers describing the admissible compromisesiferision makers. Three retrofit programs
named “A, B and C” are systematically identified the following figures. The solutions
obtained can be represented on 21 different 2 dsrorrgraphs.
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Figure 3 : Pareto frontiers on investment cost
and cumulated primary energy (PE) consumption, geeerations

Figure 3 highlights the necessary trade-off betwie@estment cost and primary energy
consumption over building extended life cycle. Timest efficient solutions in terms of
primary energy consumption mitigation are also st expensive ones (ex: solution B).
These involve envelope thermal transmittance miratnon, associated with equipments
efficiency and integration of renewable energy séerms of content and planning, solution
B involves sequentially: boiler replacement, sdl#iW production (75%), exterior wall
thermal insulation (R = 6,25 7K/W), roof insulation (R = 8,3 AK/W), ventilation (heat
recovery), bottom floor insulation (R = 5°i4/W), and windows replacement (triple glazing).

On the same Pareto frontier, solution A offersgaificant reduction of investment cost for
a relatively limited decrease in energy efficientis solution uses the same planning but
involves a different content on the following agge@xternal walls thermal resistance: R =
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2,5 nf.K/W; roof thermal resistance: R = 3,Z.K/W; bottom floor thermal resistance: R =
2,5 nf.K/W; double gazing windows.

The most energy efficient solutions are not thetroost effective ones over fifty years, as
underlined on Figure 4. For example, solution Athe identified energy retrofit program
minimizing the global cost on the extended lifeleyc
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Figure 4 : Pareto frontiers on investment cost@obal cost on life cycle, over generations
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Figure 5 : Pareto frontiers on climate change andadification, over generations

Figure 5 tends to demonstrate a correlation betwadiemate change potential and air
acidification, specifically for efficient solution®©n this case study, the results also underline
strong correlations in between cumulated primargrgy consumptions, climate change,
abiotic resources depletion and air acidificatibhese correlations allow here to reduce the
complexity of multi criteria decision making. Theye related to the reduction of energy
consumptions during the use phase. In this casky,stias is used as the heating energy before
and after retrofit operations. The observed coticia have to be questioned in the case of a
change in the type of energy for the heating system

The retrofit programs minimizing investment cost,salution C, imply the retrofit of the
building with program content similar to solution Xet, the replacement of the heating
system is then considered ultimately. The resulsiggificant heating energy consumptions,
over the first steps of the retrofit program, affén® results on most environmental indicators.
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Solutions A, B and C are all local optima, on omenmre criteria. They are different in
content, planning and performances, and represiertat trade-off priorities.

5. CONCLUSIONS

Multi criteria genetic optimization can support t@en making for existing buildings
energy retrofit through the identification of Pareton-dominated retrofit programs, on a
multi criteria basis, over life cycle, providingat of accessible trade-offs.

The case study analysed reveals that the moseffestive ones, over extended life cycle,
are not necessarily the most energy efficient swlst Some correlations, observed in this
case, in-between considered environmental critezip simplify decision making.

These few remarks have to be challenged on diffecase studies, testing parameters
sensitivity, involving other LCA indicators. Thefdi cycle models for solutions assessment
will be completed on transport, construction andmesance aspects. Decision support will
be extended to the case of existing building stocks
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