
1 INTRODUCTION 

Building design is multi criteria. Buildings expected 
performances have significantly increased over time. 
Today, buildings have to fulfill numerous objectives 
involving both regulations compliance and client 
expectations: structural and fire safety; durability; 
thermal, visual and acoustic comfort; interior air 
quality; energy consumptions mitigation, etc. In 
view of increasing environmental burdens related to 
the development of our modern societies, environ-
mental impacts have to be taken in account, at early 
design stage. Energy preservation and indoor envi-
ronmental quality have been set as clear orientations 
by the European energy policy (EC, 2003)  .  

Under our latitudes, existing buildings use and re-
lated energy consumptions – heating, cooling, venti-
lation, domestic hot water production (DHW), and 
lighting – are responsible for significant environ-
mental burdens. Moreover, the replacement rate of 
existing buildings is inferior to 1% per year, in most 
developed countries. Thus, existing stock retrofit 
represents a major lever to reach national and inter-
national commitments on climate change and non 
renewable energy consumption mitigation  (IEA, 
2008). 

However, the identification of optimal sustainable 
retrofit programs, including actions planning over a 
time period, is still a difficult task for professional 
sector. Most operational approaches are based on it-

erative building simulations guided by experience 
(Alanne, 2004).  

This paper is a contribution to decision support for 
energy retrofit programs identification through ge-
netic multi criteria optimization. 

2 MULTI CRITERIA OPTIMIZATION FOR 
BUILDING RETROFIT DECISION SUPPORT 

The identification of an approach for multi criteria 
decision support hardly depends on the nature of 
both the decision space (set of solutions) and the de-
cision criteria.  

2.1 Decision space definition 

The search space is defined as a set of building en-
ergy retrofit programs, characterized by both their 
content and planning.  

The content refers to the combination of energy 
retrofit measures implemented, addressing holisti-
cally building envelopes (thermal insulation on fa-
çades, bottom floor and roof; windows replacement; 
windows to wall ratios), and the replacement of 
equipments for ventilation, heating and DHW pro-
duction. For each of these retrofit measures, various 
alternatives are studied. They are considered to be 
discrete variables because of obvious industrial con-
straints related to production.  

The planning refers to the permutation of these 
measures, defining the time sequence for implemen-
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tation. From a mathematical standpoint, the solu-
tions are permutations of discrete variables. The 
problem is combinatorial. 

2.2 Decision criteria 

The solutions – building energy retrofit programs – 
are evaluated on a multi criteria and life cycle basis. 

The objective functions considered target envi-
ronmental impacts (i.e. primary energy consump-
tion, climate change potential, abiotic resources de-
pletion, air acidification potential, etc.), financial 
indicators (i.e. investment cost, global cost), and oc-
cupants’ well-being (summer thermal comfort indi-
cator), over life cycle. Some objectives are obvious-
ly conflicting (investment cost and primary energy 
mitigation), trade-offs have to be identified.  

 

 
Figure 1. Life Cycle Assessment & Life Cycle Cost models, 
over the retrofitted building extended life cycle.  
 

Figure 1 represents the main steps of the life cy-
cle assessment (LCA) and life cycle cost (LCC) 
models implemented to assess solutions performanc-
es. Over the life cycle steps, materials and energy 
consumptions are required and generate emissions in 
the environment. The life cycle models developed 
are limited to the elements differentiating the alter-
native energy retrofit programs. Energy and natural 
resources consumption and generated emissions are 
then related to environmental and economic impacts 
through LCA and LCC databases. The use phase is 
modeled by the consumption of energy needed for 

heating, cooling, ventilation and DHW production. 
Heating loads and thermal comfort are evaluated 
through building dynamic thermal simulation. The 
present LCA model does not account for materials 
transportation (from factory to construction site), 
construction operations on site and maintenance 
over life cycle. 

2.3 Multi criteria approaches for energy retrofit 
decision support 

The present decision problem is multi criteria, the 
decision space is finite. All the solutions are identi-
fied by their content and planning, yet their perfor-
mances are not known a priori. In this case, various 
methodologies can support multi criteria decision 
making. There are roughly two types of decision 
making methodologies: preference based approaches 
and generative approaches (DEB, 2002).  

Preference based methods include classical trans-
formations from a multi criteria to a mono criterion 
optimization problem: weighting, goal program-
ming, ε-constraints, etc. These procedures generally 
require some knowledge of the solutions, to set 
weights, constraints or goals. They lead to the identi-
fication of a single solution, per simulation run. 
Moreover, weighting and E-constraints are sensible 
to problem convexity properties. If the problem is 
non convex, some solutions may not be accessible to 
decision makers (DEB, 2002). 

Generative approaches aim at providing the deci-
sion makers with a set of good trade-off solutions, 
describing the various compromises that can be con-
sidered. Theses ones are often represented by Pareto 
frontiers. The Pareto frontier is the set of non domi-
nated solutions among the considered alternatives. 
By definition, a given solution is said to be non 
dominated if there is no other solution, from the set 
of considered alternatives, being no worse in all ob-
jectives and strictly better in at least one objective  
(DEB, 2002). Figure 2 represents the Pareto frontier 
and the dominated solutions for a two objectives 
minimization problem. 

The present contribution addresses decision sup-
port based on a generative approach. The search for 
the Pareto frontier can be supported by multi criteria 
optimization. The considered problem is combinato-
rial, the variables are discrete, and the objective 
functions are implicit (involving dynamic thermal 
simulations). Thus, the optimization methods classi-
fication set by (Colette et al., 2002), suggests to use 
metaheuristics. These stochastic approximate opti-
mization methods are well adapted to the search for 
optimal solutions on rather large search spaces. Fac-
ing a given problem, the practical relevance of a 
metaheuristic in comparison to the others is still an 
open question  (Dréo et al., 2003). We decided to 
implement a genetic algorithm considering previous 
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successful applications on building design problems 
(Pernodet Chanterelle, 2010). 
 
 

 
 
 
 
 
 
 
 
 
Figure 2 : Example of dominated solutions and Pareto frontier 

3 MULTI CRITERIA GENETIC OPTIMIZATION 
FOR BUILDING SEQUENTIAL ENERGY 
RETROFIT 

Genetic algorithms (GA) are stochastic optimization 
methods inspired from the Evolution theory mecha-
nisms. Solutions are represented by chromosomes, 
which are sets of genes. The alleles coded on genes 
account for the values taken by specific describing 
parameters, for a given solution. Regarding building 
energy retrofit, the solutions are energy retrofit pro-
grams. Each solution is represented by two chromo-
somes: one coding the content, the other for the 
planning. Each gene of the content chromosome rep-
resents a specific retrofit measure. The allele is the 
alternative considered for the given retrofit measure. 
Each gene of the planning chromosome stands for 
the position of a given retrofit measure in the time 
sequence.  

GAs base the exploration of the search space on 
the evolution of a population of solutions, over gen-
erations. At each generation, the performances of 
population’s solutions are assessed. Then, best solu-
tions are selected for reproduction. The offspring is 
generated by crossover and mutation operations 
from parents’ chromosomes. Finally, a selection 
procedure is applied to build the population of the 
next generation, from the current parents’ population 
and the generated offspring. The evolution of the 
random initial population over generations improves 

solutions quality and the description of accessible 
trade-offs.  

Multi criteria genetic optimization includes a 
broad variety of algorithms. The Non Dominated 
sorted algorithms (NSGA-II) implemented in this 
work has demonstrated good performances over var-
ious test problems (Deb et al., 2000) (Zitzler et al., 
2000).  

NSGA-II algorithm implements a differentiated 
operator for selection. Solutions are first sorted into 
Pareto frontiers. Non dominated solutions are as-
signed to the Pareto frontier ranked 1. The remain-
ing solutions are iteratively attributed to Pareto fron-
tiers of increasing ranks. Then, solutions are 
assigned a “crowding distance” (Deb, 2002). This 
indicator represents the relative distance separating a 
given solution from its closest neighbours, on the 
Pareto frontier they belong to. Solutions are then se-
lected according to: first, the rank; and second, the 
crowding distance they have been assigned. This ap-
proach targets both solutions quality and dispersion 
on the compromise surface they describe. 

Because of the specific solution representation 
implemented for energy retrofit programs, on two 
chromosomes, crossover operators are differentiated 
for content and planning chromosomes. A simple 
two-point crossover operation is used for the content 
chromosome whereas a two-point order crossover 
operator (Murata et al., 1995) is implemented for the 
planning chromosome, so as to preserve some in-
formation from the parents’ time sequences.  

4 BUILDING RETROFIT CASE STUDY 

The multi criteria genetic algorithm (NSGA-II) pre-
sented has been implemented to study sequential en-
ergy retrofit programs, on different existing build-
ings. The construction considered for this case study 
is a multi family building, referred to as “barre 
Grimaud” in the following developments.  

Barre Grimaud is a five-storey multi family build-
ing, located in Paris suburban area. The construction 
was completed in 1974, before the introduction of 
the first building energy regulation in France (1975). 
The 10 enclosed apartments represent a floor area of 
792 m2.   

4.1 Barre Grimaud description 

Table 1 describes the building envelope and the 
systems used for heating, ventilation and domestic 
hot water production (DHW), at present state. Be-
fore energy retrofit actions implementation, the 
building envelope is not thermally insulated.  
 
 
 

 



Table 1.  Barre Grimaud, envelope and systems features before energy retrofit 
(Thicknesses given in mm; envelope composition detailed from exterior to interior). 

 ________________________________________________________________________________ 
Systems & equipments  State before retrofit      ________________________________________________________________________________ 
External walls     Coating (20) + solid concrete blocks (150) + air (10) + plaster (50) 
Bottom floor      Concrete slab (150) above cellars + mortar (50) + tiles (10) 
Intermediate floors    Concrete slab (150) + mortar (50) + tiles (10) 
Terrace roof      Gravels (30) + bitumen (4) + Concrete slab (150)  
Windows       Single glazing with PVC frames 
Ventilation       Non modulated mechanical ventilation 
Heating system     Collective gas boiler, installed before 1988 
DHW production    Individual gas boiler ________________________________________________________________________________ 

 
Table 2.  Energy retrofit options considered for Barre Grimaud (thicknesses given in mm). 

 ________________________________________________________________________________ 
Systems & equipments  State before retrofit        ________________________________________________________________________________ 
External walls     Mineral wool exterior insulation (100, 120, 150, 180, 200, 250, or 300) 
Bottom floor      Polystyrene exterior insulation (100, 120, 150, 180, 200, or 250) 
Terrace roof      Polyurethane exterior insulation (100, 150, 200, 250, 300, 350, or 400) 
Windows type     Low-e double glazing or triple glazing, with wood frames 
Windows size      North increasing ratio options: 0.8, 1 or 1.5 
West, South,       East increasing ratio options: 0.8, 1, 1.25 or 1.5 
Ventilation       Heat recovery or humidity controlled 
Heating system     Low temperature condensing gas boiler 
DHW production    Solar thermal fraction of DHW needs: 35%, 55% or 75% ________________________________________________________________________________ 

 

The set point temperature is 19°C from early Oc-
tober to late April. During the summer, solar protec-
tions (louvers) are used to improve thermal comfort. 
Occupation scenarios are independent of the retrofit 
program assessed.  

A three zone thermal model has been associated to 
the building: ground floor, intermediate floors, and 
top floor define the three zones considered.    

4.2 Retrofit programs content and sequence 

For each energy retrofit program, the content is 
defined as a combination of options chosen from the 
8 retrofit measures classes presented on Table 2. 

Among retrofit options, window types and win-
dow-to-wall increase ratios can be differentiated ac-
cording to the façades. For a given retrofit program, 
the design (nominal power) of the condensing gas 
boiler is adapted to the building heating demand, at 
the retrofit step considered for the boiler replace-
ment.  
From the sequence standpoint, each of the retrofit 
measures classes is considered for a different step of 
the retrofit program, except windows resizing. Win-
dows replacement and resizing get necessarily in-
volved at the same retrofit step, because of economic 
constraints. The external walls and the windows of 
all façades are respectively retrofitted at the same 
step. The different steps are implemented one after 
the other and separated by one year.  
Based on the previous hypothesis, more than 27,3E9 
different retrofit programs can be generated. Genetic 

algorithms, as NSGA-II, are adapted to large search 
space exploration.    

4.3 Objective functions  

7 objective functions have been considered to assess 
retrofit programs performances over the building ex-
tended life span (assumed to be 50 years): 
 
 Cumulated primary energy consumption [MJ] 
 Climate change potential [kg CO2 eq.] 
 Abiotic resources depletion [kg Sb eq.]  
 Air acidification [kg SO2 eq.] 
 Investment cost [k€] 
 Global cost on life cycle (involving investments 

and energy consumptions over use) [k€] 
 Thermal comfort indicator [hours] 

4.4 GA simulations parameters 

The multi criteria genetic optimization has been 
conducted with the following parameters:  
 
 Size of the population: 100 
 Size for reproduction: 100 
 Crossover probability : 80% 
 Mutation probability: from 1% to 10%  

(linear increase over 100 generations)  
 Number of generations: 100 

4.5 Results and interpretation 
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Figure 3. Pareto frontiers for different generations, projected onto the 21 2-dimension planes defined by the objective functions 
 
The optimal retrofit programs are identified through 
the application of the NGSA-II procedure to a ran-
dom initial population of solutions. The results are 
presented as Pareto frontiers describing the admissi-
ble compromises for decision makers.  

The solutions obtained after 100 generations have 
been represented on the 21 different 2-dimension 
graphs defined by the 7 objectives considered (Fig-
ure 3). On each these, the sets of Pareto non-
dominated solutions identified for the generations 1, 
10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 is project-
ed onto the plane defined by the two axis.  

From the analysis of Figure 3, various remarks 
can be set out:  

 
 All related graphs highlight a necessary trade-off 

between investment and environmental impacts. 
Roughly, the more a retrofit program mitigates 
the environmental impacts, the more expensive it 
is, on the search space defined.   
 
 
 

 Some of the non-dominated solutions are clearly 
dominated in terms of compromise in between 
global cost on life cycle (investment + use over 
50 years) and the other indicators. Considering 
the given 50 year extended life cycle, the most 
expensive or the less energy efficient retrofit pro-
grams are not the best solutions.   
 

 Some correlations are clearly observed in be-
tween the following environmental indicators: 
climate change potential, cumulated primary en-
ergy consumption, abiotic resources depletion, 
and to a lesser extend with air acidification poten-
tial. Some explanation is given further.   
 

 All the energy retrofit programs identified as Pa-
reto non-dominated solutions, guaranty high 
summer thermal comfort. The number of hours 
with interior zone temperature superior to 28°C, 
is inferior to 600 hours over the 50 years of the 
extended life cycle, for all solutions. This remark 
is valid with respect to average Paris climate con-
ditions, and in the case of adapted occupant be-
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havior (use of solar protections in summer, over-
night purge).  

 

The three retrofit programs named “A, B and C”, 
systematically identified on the following figures, 
aim at illustrating some of the previous remarks.

 

 
 
 
 
Figure 4. Pareto frontiers on investment cost and cumulated primary energy (PE) consumption, over generations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Pareto frontiers on investment cost and global cost on life cycle, over generations 
 

 
 

 
 
Figure 6. Pareto frontiers on abiotic resources depletion and climate change potential, over generations 
 

Figure 4 highlights the necessary trade-off be-
tween investment cost and primary energy consump-
tion over building extended life cycle. The most ef-
ficient solutions in terms of primary energy 
consumption mitigation are also the most expensive  
 

ones (ex: solution C). These involve envelope ther-
mal transmittance minimization, associated with 
equipments efficiency and integration of renewable 
energy use. In terms of content and planning, solu-
tion C involves sequentially: boiler replacement, ex-
terior wall thermal insulation (R = 7,5 m2.K/W), roof 
insulation (R = 8,3 m2.K/W), ventilation (heat re-



0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

Cumulated primary
energy consumption

Abiotic resources
depletion

Climate change
potential

Air acidification 
potential

Investment cost Global cost 
(investment + use)

Objective functions

A
v

e
ra

g
e

 r
e

la
ti

v
e

 im
p

a
c

ts
 

o
n

 "
F

ro
n

t 
1

0
0

" 
s

o
lu

ti
o

n
s

 [
%

]

Materials production & end of life Building use phase TOTAL on life cycle

covery), bottom floor insulation (R = 3,75 m2.K/W), 
solar DHW production (75%), and windows re-
placement (triple glazing).   

On the same Pareto frontier, solution B offers a 
significant reduction of investment cost for a rela-
tively limited decrease in energy efficiency. This so-
lution uses the same planning but involves a differ-
ent content on the following aspects: external walls 
thermal resistance: R = 3 m2.K/W; roof thermal re-
sistance: R = 3,3 m2.K/W; bottom floor thermal re-
sistance: R = 2,5 m2.K/W; double gazing windows.  

The most energy efficient solutions are not the 
most cost effective ones over fifty years, as under-
lined on Figure 5. For example, solution B is the 
identified energy retrofit program minimizing the 
global cost on the extended life cycle. 

The retrofit programs minimizing investment cost, 
as solution A, imply a retrofit program content very 
similar to solution B. On the content, the only dif-
ferences concern the ventilation system (humidity 
controlled) and the solar factor of the DHW produc-
tion (35%).Yet, the replacement of the heating sys-
tem is then considered ultimately. The resulting sig-
nificant heating energy consumptions, over the first 
steps of the retrofit program, affect the results on 
most environmental indicators (Figure 6).  
Solutions A, B and C are all local optima, on one or 
more criteria. They are different in content, planning 
and performances, and represent different trade-off 
priorities. 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 7. Relative average share and intervals of variation (on the non-dominated solutions of the 100th generation) of the life cycle 
steps on the whole life cycle. 
 
 Figure 7 represents, on the different objective 
functions, the average share and the intervals of var-
iation (on the non-dominated solutions of the 100th 
generation) of two sets of life cycle steps: “materials 
and systems production and end of life”, and “build-
ing use phase”. The results justify the correlations 
noticed in between: climate change potential, abiotic 
resources depletion, and cumulated primary energy 
consumption. For these three environmental indica-
tors, the share of “materials and systems production 
and end-of-life” impacts is much  
 
 

inferior to the share of the impacts related to the use 
phase (energy consumption), even with respect to 
the intervals of variations. The impacts on these 3 
indicators are close to linear functions of the retrofit-
ted building energy performance, explaining the 
strong correlations observed.     

From a decision making prospective, these corre-
lations allow here to reduce the complexity of multi 
criteria decision making. However, in this case 
study, gas is used as the heating energy before and 
after retrofit operations. The observed correlations 
have to be questioned in the case of a change in the 
type of energy for the heating system.  



5 CONCLUSION 

Multi criteria genetic optimization can support deci-
sion making for existing buildings energy retrofit. 
The identification of Pareto non-dominated retrofit 
programs, on a multi criteria basis, over life cycle, 
provides a set of accessible trade-offs for decision 
makers.  
The case study analyzed reveals that the most cost 
effective building retrofit programs, over extended 
life cycle, are not necessarily the most energy effi-
cient solutions. Some correlations, observed in this 
case, in-between the considered environmental crite-
ria help simplify decision making.  
However, these few remarks have to be challenged 
on other case studies, testing parameters sensitivity 
(extended lifespan, search space definition, energy 
cost evolutions over time), involving complementary 
LCA indicators. The life cycle models for solutions 
assessment will be completed on transport, construc-
tion and maintenance aspects. Decision support will 
be extended to the case of existing building stocks.   
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